All toric local complete intersection singularities admit projective crepant resolutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Toric L.C.I.-Singularities Admit Projective Crepant Resolutions

It is known that the underlying spaces of all abelian quotient singularities which are embeddable as complete intersections of hypersurfaces in an affine space can be overall resolved by means of projective torus-equivariant crepant birational morphisms in all dimensions. In the present paper we extend this result to the entire class of toric l.c.i.-singularities. Our proof makes use of Nakajim...

متن کامل

All Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions All Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions

For Gorenstein quotient spaces C d =G, a direct generalization of the classical McKay correspondence in dimensions d 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstei...

متن کامل

All Abelian Quotient C.I.-Singularities Admit Projective Crepant Resolutions in All Dimensions

For Gorenstein quotient spaces C/G, a direct generalization of the classical McKay correspondence in dimensions d ≥ 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstein...

متن کامل

Toric complete intersection codes

In this paper we construct evaluation codes on zero-dimensional complete intersections in toric varieties and give lower bounds for their minimum distance. This generalizes the results of Gold–Little–Schenck and Ballico–Fontanari who considered evaluation codes on complete intersections in the projective space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 2001

ISSN: 0040-8735

DOI: 10.2748/tmj/1178207533